|
Dimarts, 4 de febrer
Les cintes infinites
Agafeu un full de paper, talleu-lo en vertical per un lateral fins que obtingueu una cinta gruixuda i empegueu un extrem amb l'altre fent-lo voltar sobre el seu eix. Aleshores preneu un llapis i comenceu a ratllar-la. Us trobareu. Una punta de la ratlla es trobarà amb l'altra. Tècnicament haureu fet un cos geòmetric amb una sola cara i una sola aresta. Serà una cinta de Moebius.
Una cinta de Moebius provoca aquella fascinació que et fan sentir els grans descobriments. I t'adones que són grans perquè són senzills. I de tan senzills que són sempre penses que és impossible que ningú ho hagués plantejat abans. De fet, aquesta és l'única raó de ser d'aquesta cinta . La seva practicitat és nul.la (bé, serveix per fer cintes transportadores que es desgasten uniformement) però aquesta inutilitat la fa més fascinant.
És atractiva la seva condició d'infinita, pots tallar-la tots els cops que vulguis i extreure'n noves cintes que s'embolicaran unes amb les altres.La seva forma de 8 ha inspirat a l'art i a la ciència ficció. I a les formigues ens va mostrar el bon camí, aquell que no s'acaba mai de fer. El savi matemàtic ens hi va fer caminar per demostrar que sempre s'arriba al mateix lloc. No sé si això és bo o dolent, potser només ensenya a ser pacient.
Per fer una cinta de Moebius.
Qui era AUGUST FERDINAND MOEBIUS.
L'art i Escher.
lasius i neglectus
4.2.03
|